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Preface

Recognize your sample space for what it is. Pay attention to its properties and follow

through any logical necessities arising from these properties. The solution here to

the apparent awkwardness of the sample space is not so difficult. The difficulty is

facing up to reality and not imagining that there is some esoteric panacea.

J. Aitchison: The one-hour course in compositional data analysis or compositional

data analysis is simple. IAMG’97, Barcelona, 1997.

In 1982, John Aitchison published a seminal paper on the log-ratio approach

to compositional data analysis (Aitchison, 1982), in which he recognised that these

are essentially scale invariant observations. In other words, although compositional

data have traditionally been defined as positive multivariate observations with the

unit sum constraint, the relevant information is actually contained in the (log) ra-

tios between their components. This mental step gave rise to the so-called log-ratio

methodology of compositional data, which has now become a methodological main-

stream in applications, but still one step further was needed to recognise that proba-

bility density functions are also essentially of the same nature (Egozcue et al., 2006).

And much more, that there can be derived a general framework of Bayes spaces with

the Hilbert space structure (van den Boogaart et al., 2014), which covers both com-

positional data and probability density functions (PDFs) as discrete and continuous

distributional (relative) data. Bayes spaces opened up the possibility of considering

PDFs as data objects. However, their statistical processing by popular methods

of functional data analysis (Ramsay and Silverman, 2005) must be done carefully,

because their sample space is formed by equivalence classes of proportional posi-

tive functions, far enough from the usual L2 space. This was first demonstrated in

Delicado (2011) and further developments over the years led to the current state of

a rapidly growing community, which can be documented by recent publications in

renowned journals (Lei et al., 2023; Eckardt et al., 2024; Ma et al., 2024; Murph

et al., 2024; Qiu et al., 2024; Kutta et al., 2025). The potential of Bayes spaces

was recognized also outside the core community: in the paper Petersen et al. (2022)

whose aim was to compare different methodologies for modeling PDFs as data ob-

jects, the conclusion about looking beyond univariate densities was that “The Bayes



3

space representation, (. . . ), provides a sound theoretical base for multivariate densi-

ties, although its practical implementation and utility has only been given limited,

if any, consideration.” Indeed, the generalisation of Bayes spaces to the multivariate

setting was addressed in Genest et al. (2023) and its first concise application was

presented in Matys Grygar et al. (2024).

I’m grateful to have the opportunity, with the great support of my colleagues,

to contribute to many important developments in the field. The aim of this thesis

is to summarise some of the most important of these. It consists of a general (and

rather simplified) introduction to density data analysis and a specification of the

Candidate’s contribution to the research area, followed by a collection of scientific

papers illustrating the corresponding publication activities. The aim of the thesis is

thus to present developments in density data analysis using Bayes spaces, specifically

from two aspects:

1. to build a concise methodology for density data processing by adapting popular

methods of functional data analysis;

2. to contribute to the theoretical development of Bayes spaces themselves.

These two aspects are reflected in the papers that constitute the thesis.

Most of the work reported in the thesis is the result of extensive collaboration

with my colleagues and PhD students. I would like to thank them all for the coop-

eration over the past years and look forward to further joint scientific activities.

Olomouc, February 2025

Karel Hron
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1 Compositional and density data as relative data

Compositional data are traditionally presented in the literature as positive con-

strained multivariate data (Chayes, 1960; Scealy and Welsh, 2011; Tsagris and

Stewart, 2018), which means that the sample space of D-part compositions x =

(x1, . . . , xD) is the simplex,

SD =

{
x = (x1, . . . , xD) ∈ RD | xi > 0,

D∑
i=1

xi = κ

}
. (1)

But already John Aitchison recognised in Aitchison (1986), Property 2.3 that the

sample space of compositional data is in fact more general, consisting of equivalence

classes of proportional positive vectors, i.e. vectors multiplied by a positive constant

– and this idea was further developed in the following decades, leading to the cur-

rent definition of compositional data as scale invariant objects (Pawlowsky-Glahn

et al., 2015), where the actual representation of compositions is irrelevant for their

analysis. Consequently, the simplex sample space (1) is the sample space of unit

sum representations of multivariate data whose relevant information is contained in

(log-)ratios between components (compositional parts). This relative information is

fully captured by representing compositions in terms of logcontrasts, i.e. loglinear

combinations

a1 lnx1 + . . .+ aD lnxD

with

a1 + . . .+ aD = 0.

With logcontrasts the logratio methodology of compositional data was born. It is

essential to analyse compositions or related data in an appropriate sample space,

for which the respective methods are designed, otherwise their statistical processing

may lead to useless results (Pearson, 1897; Chayes, 1960; Aitchison, 1986; Filzmoser

et al., 2018). While approaches that treat compositions as constrained data at-

tempt, usually with considerable effort, to adapt popular statistical methods to the

simplex, the strategy developed in the logratio methodology is different: to represent

compositional data in an appropriate set of logcontrasts, and then to proceed with

popular multivariate statistical methods (taking into account the interpretation of

these logcontrasts) in the real space for which these methods were developed (Eaton,
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1983). There is still an ongoing discussion about which choice of logcontrasts is the

best (Pawlowsky-Glahn et al., 2015; Filzmoser et al., 2018; Greenacre, 2018); in any

case, the logratio methodology is now the mainstream approach for the statistical

processing of compositions. However, one point was clear from the beginning: if

the logratio methodology was to be developed beyond the presentation of practical

and interpretable sets of logcontrasts for the analysis of compositions, the geometric

structure of the sample space was needed. For compositional data, the Aitchison

geometry (Pawlowsky-Glahn and Egozcue, 2001; Billheimer et al., 2001) with the

Euclidean vector space structure was developed, which fully reflects them as scale

invariant observations. And allowed to generalise the pioneering and truly funda-

mental ideas of John Aitchison to other data objects carrying relative information,

in particular to probability density functions.

Probability density functions (PDFs), on which we focus in the thesis, can be

considered as compositional data with infinite number of components, i.e., when

D → ∞. And therefore as their functional counterparts: positive (Borel measur-

able) functions with the unit integral constraint. But using the same arguments as

before, also PDFs are rather scale invariant objects and the unit integral constraint

is just a proper (despite very important) representative of the equivalence class of

proportional functions. This was recognized in Egozcue et al. (2006) and van den

Boogaart et al. (2014) equipped the sample space with the Hilbert space structure

and called it Bayes space – to honor Bayeasian statistics where proportionality of

PDFs is commonly used and to point out that the Bayes theorem is essentially the

shift from prior to posterior distributions by the likelihood from the Bayes space

viewpoint (van den Boogaart et al., 2010). The concepts used in compositional data

analysis have their infinitesimal counterparts including the possibility of representing

PDFs in the standard L2 space, where popular methods of functional data analysis

can be applied (Ramsay and Silverman, 2005; Kokoszka and Reimherr, 2015). But

the more, similar to the Bayes theorem, the general setting of Bayes spaces enables

to bring many well-known concepts down to simple algebra and it allows to elegantly

define new methods. We will demonstrate all of this in the following sections.
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2 Bayes spaces as a general framework for representa-

tion of relative data

Bayes spaces are designed to provide a geometric representation for relative data –

multivariate compositional data (Aitchison, 1986), compositional tables and cubes

(Egozcue et al., 2015; Fačevicová et al., 2022), univariate and multivariate density

functions (Egozcue et al., 2006; Genest et al., 2023). – characterised by the property

of scale invariance (van den Boogaart et al., 2014). This property states that, given

either a finite or infinite domain Ω and a positive real multiple c, two proportional

positive functions f(x) and g(x) (i.e. such that g(x) = cf(x), for c > 0) carry

essentially the same relative information (van den Boogaart et al., 2014). This also

follows the common strategy in Bayesian statistics, where multiplicative factors are

typically omitted from computations, as they are not essential to the definition of

the distributions at hand. Note that the scale invariance of a (discrete or continuous)

density f is a direct consequence of the same property of the associated measure

µ, i.e. the σ-finite measure µ, such that f = dµ/dP for a reference measure P. In

this context we refer to the so-called B-equivalence of measures (and densities): two

measures µ and ν are B-equivalent if they are proportional, i.e. there exists a positive

real multiple c such that ν(A) = c · µ(A) for any A ∈ A, A being a sigma-algebra on

Ω.

2.1 Bayes Hilbert spaces

Given a σ-finite measure P, the Bayes space B2(P) is a space of B-equivalence classes
of σ-finite positive measures µ with square-integrable log-density w.r.t. P, i.e.,

B2(P) =

{
µ ∈ B2(P) :

∫ ∣∣∣∣ln dµ

dP

∣∣∣∣2 dP < +∞

}
.

From a practical point of view, the reference measure P plays an important role in

the whole concept, as thoroughly investigated in Talská et al. (2020). The choice of

the reference measure determines a weighting of the domain Ω of the composition

or PDF (i.e. of the distribution in the discrete or continuous case), which can be

used to give more relevance to certain regions of Ω when performing multivariate

statistics or functional data analysis (FDA), according to the purpose of the analysis
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(van den Boogaart et al., 2014; Egozcue and Pawlowsky-Glahn, 2016; Talská et al.,

2020). However, even if this is not necessarily of primary interest, the choice of

the reference measure makes it possible to cover all the above cases of relative data

within the Bayes space framework. Furthermore, to change the reference measure

from λ (typically the Lebesgue or uniform measure) to a measure P with strictly

positive λ density p = dP/dλ, the well-known chain rule can be used. For a generic

measure µ we have

µ(A) =

∫
A

dµ

dλ
dλ =

∫
A

dµ

dλ
· dλ
dP

dP =

∫
A

dµ

dλ
· 1
p
dP.

As mentioned above, the Bayes space framework covers the usual (unweighted)

case of D-part compositional data for Ω = {1, . . . , D} and by taking P as the count-

ing measure, that is, for x = 1, . . . , D, P({x}) = 1. The set of vectors of RD with

positive components are densities of measures on Ω, and they are B-equivalent if

they have proportional components. In this case, B2(P) is a (D − 1)-dimensional

Euclidean space (Pawlowsky-Glahn and Egozcue, 2001; Billheimer et al., 2001) and

f(x) = (f(1), . . . , f(D)) ≡ (x1, . . . , xD). The special case of compositional data

analysis is addressed in many publications, e.g. van den Boogaart and Tolosana-

Delgado (2013); Pawlowsky-Glahn et al. (2015); Filzmoser et al. (2018); Greenacre

(2018), which are more or less grounded in the underlying geometric properties.

Similarly, Bayes spaces can be defined for the case where the domain Ω is a Carte-

sian product of two domains ΩX and ΩY , i.e. Ω = ΩX × ΩY . In this case the

reference measure P can be decomposed as a product measure P = PX × PY and

the Hilbert space structure of the Bayes space B2(P) can be constructed accordingly

(Hron et al., 2023; Genest et al., 2023). This covers the cases of compositional tables

and bivariate densities, specifically f(x) = [f(i, j)] ≡ [xij ] for ΩX = {1, . . . , i, . . . , I},
ΩY = {1, . . . , j, . . . , J} in the former case (Egozcue et al., 2015; Fačevicová et al.,

2018) and f(x) ≡ f(x, y) for ΩX ,ΩY ⊂ R in the latter case (Hron et al., 2023;

Genest et al., 2023); both can be extended to the multivariate setting (Fačevicová

et al., 2022; Genest et al., 2023).

The Bayes space is built with operations of perturbation and powering which can

be defined for any two densities f, g with respect to P and a real constant α as

(f ⊕ g)(x) =B2(P) f(x) · g(x) and (α⊙ f)(x) =B2(P) f(x)
α, (2)
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respectively. The lower index in =B2(P) means that the right hand side of the equa-

tions can be arbitrarily rescaled without altering the relative information that the

resulting density in B2(P) contains. The Hilbert space structure is completed by

defining the Bayes inner product,

⟨f, g⟩B2(P) =
1

2P(Ω)

∫
Ω

∫
Ω
ln

f(x)

f(s)
ln

g(x)

g(s)
dP(x) dP(s), (3)

which implies in the usual way also the norm and the distance,

||f ||B2(P) =
√
⟨f, f⟩B2(P), dB2(P)(f, g) = ||f ⊖ g||B2(P), (4)

where f ⊖ g = f ⊕ [(−1) ⊙ g] is the perturbation-subtraction of densities. Note

that in case of compositional data or compositional tables we refer for (2)-(4) to

the Aitchison geometry (Pawlowsky-Glahn and Egozcue, 2001) which was developed

historically before the first concepts of Bayes spaces were introduced (Egozcue et al.,

2006). While the scale of the reference measure P does not have any impact for the

operations of perturbation and powering, it does influence the inner product because

changing the scale corresponds to shrinkage (or expansion) of the Bayes space (for

details, see Talská et al. (2020)).

The usual strategy when dealing with the Bayes spaces (van den Boogaart et al.,

2014; Hron et al., 2016; Talská et al., 2018, 2021) is not to process densities directly

in the original space but to map them into the standard L2 (Euclidean) space where

most of the widely-used methods of functional (multivariate) data analysis can be

employed. The clr transformation of a density f(x) ∈ B2(P) is a real function

f c : Ω → R, f c ∈ L2
0(P), defined as

f c(x) = clr(f)(x) = ln f(x)− 1

P(Ω)

∫
Ω
ln f(x) dP. (5)

Similar as for perturbation and powering, the scale of P does not play any role in (5),

too. On the other hand, one should note that the resulting function f c is expressed

with respect to reference P. As a consequence, using any measure other than the

Lebesgue (or uniform) λ leads to clr-transformations defined over a weighted space

and a further “unweighting” step is needed (Egozcue and Pawlowsky-Glahn, 2016;

Talská et al., 2020). Moreover, one should also take into account the zero-integral

constraint of clr transformed densities, i.e.,∫
Ω
f c(x) dP = 0. (6)
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Here L2
0(P) denotes the subspace of the L2(P) space of real functions having zero

integral; in particular, one clearly has that f c(x) ∈ L2
0(P). In the functional case,

this constraint usually does not represent any serious obstacle for the application of

FDA methods – especially if a proper spline representation of the PDFs, compatible

with the concept of Bayes spaces, is used (Machalová et al., 2016, 2021; Hron et al.,

2023) which forms a cornerstone in a large number of computational methods for

FDA.

A prominent case to see the effect of density data analysis in Bayes spaces is that

of functional principal component analysis of PDFs, which we refer to as simplicial

functional principal component analysis (SFPCA) (Hron et al., 2016), recently ex-

tended to incorporate also measurement process errors (Pavl̊u et al., 2024). The

aim of SFPCA is analogous to that of PCA on multivariate data: to capture the

main modes of variability in the data by a small number K of linear combinations

of the original variables. Let λ be the commonly used Lebesgue reference measure

and all PDFs are defined on the same domain I = ⟨a, b⟩. Then, for X1, ..., XN

being a (centred) sample in B2(λ), i.e., we performed perturbation-subtraction by

X = 1
N⊙

⊕N
i=1Xi, SFPCA looks firstly for the main mode of variability. This means,

for the element ζ1 in B2(λ) – called first simplicial functional principal component

(SFPC)– maximizing over ζ ∈ B2(λ),

1

N

N∑
i=1

⟨Xi, ζ⟩B2(λ)
2 subject to ∥ζ∥B2(λ) = 1; ⟨ζj , ζk⟩B2(λ) = 0, k < j.

The remaining SFPCs, {ζj}j≥2, capture the remaining modes of variability subject

to be mutually orthogonal, and are thus obtained by solving problem the previous

maximization problem with the additional orthogonality constraint ⟨ζk, ζ⟩B2(λ) =

0, k < j. The output are eigenfunctions ζj of the sample covariance operator V :

B2(λ) → B2(λ), acting on x ∈ B2(λ) as

V x =
1

N

N⊕
i=1

⟨Xi, x⟩B2(λ) ⊙Xi,

also called harmonics (interpreted in terms of the original data), and scores (coeffi-

cients, representing data structure of the original observations), so that finally

Xi ≈
K∑
k=1

⟨Xi, ζk⟩B2(λ) ⊙ ζk.
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The j-th SFPC ζj and the associated scores Ψij = ⟨Xi, ζj⟩B2(λ), i = 1, ..., N , are

obtained by solving the eigenvalue equation

V ζj = ρj ⊙ ζj ; (7)

ρj denotes the j-th eigenvalue, with ρ1 ≥ ρ2 ≥ ... . For each j, the term ρj/
∑

j ρj is

associated with the proportion of total variability explained by the SFPC ζj . The

eigenvalue equation is solved using basis expansion of each datum Xi, i = 1, ..., N

using K known basis functions ϕ1, ..., ϕK :

Xi(·) =
K⊕
k=1

cik ⊙ ϕk(·),

where cik = ⟨Xi, ϕk⟩B2(λ), k = 1, ...,K. Commonly, compositional splines (Machalová

et al., 2021) are used for this purpose. To perform SFPCA exploiting the efficient

routines available in L2 space (i.e., avoid computations in Bayes spaces), the clr

transformation (5) can be used which maps the operations of perturbation and pow-

ering and the Bayes inner product to the usual addition of two real functions and

multiplication of a function by a scalar, and the standard L2 inner product, specifi-

cally

• clr(f ⊕ g)(t) = f c(t) + gc(t), clr(α⊙ f)(t) = α · f c(t), t ∈ I,

• ⟨f, g⟩B2(I) = ⟨clr(f), clr(g)⟩L2(I).

However, analysing PDFs in Bayes spaces typically adds value beyond repre-

sentation in a meaningful sample space. In the context of dimension reduction,

an interesting property can be exploited for PDFs belonging to the extended ex-

ponential family. Recall that a k-parametric extended exponential family on Ω,

ExpB2(I)(g,T ,ϑ) is a collection of densities

f(t,α) =B2(I) g(t) · exp


k∑

j=1

ϑj(α)Tj(t)

 , t ∈ Ω,

where α denotes the k-dimensional vector of parameters in a k-dimensional param-

eter space A, while functions g : Ω → R, ϑj : A → R and Tj : Ω → R, j = 1, ..., k,

are Borel-measurable. An extended exponential family on Ω is a finite dimensional
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affine subspace of the Bayes space B2(I) (van den Boogaart et al., 2010). A PDF in

ExpB(I)(g,T ,ϑ) can then be expressed as a linear combination in B2(I),

f(t,α) =B2(I) g(t)⊕
k⊕

j=1

[ϑj(α)⊙ exp{Tj(t)}] , t ∈ Ω,

or equivalently in the clr space as

f c(t,α) = clr(g(t)) +
k∑

j=1

[ϑj(α) · clr(exp{Tj(t)})] , t ∈ Ω.

For k0 ≤ k uncertain parameters, the SFPCA thus estimates an orthonormal basis of

the corresponding k-dimensional affine space in B2(I), which is associated to k0 ≤ k

non-zero eigenvalues. This will be illustrated with an example from Hron et al.

(2016).

Example 1 (truncated normal) We consider normal densities, µ = 0, σi = exp(−1+

(i− 1)/10), i = 1, ..., 21, I = [−5, 5]

f(t;σi) =B(λ)2 exp

{
− t2

2σ2
i

}
, t ∈ I, (8)

or in the clr space

f c(t;σi) = − t2

2σ2
i

+
25

6σ2
i

, t ∈ I,

see Figure 1. A normal density N(0, σ2) restricted on Ω belongs to a 1-parametric

extended exponential family, with α = σ, ϑ1(α) = 1/σ2, and T1(t) = −t2. Figure 2

reports the results of SFPCA. The first SFPC –displayed in Figure 2c– captures

the entire variability of the dataset and is precisely interpreted in terms of mass

concentration. Indeed, the positive scores along the first SFPC are associated with

the highest standard deviations of the set of normal PDFs and vice versa (Figure 2b;

here the indices i = 1, ..., 21 refer to the standard deviation σi of the corresponding

density). Such an interpretation can be easily derived from the plot of the mean

density perturbed by ⊕/⊖ the first SFPC weighted according to the corresponding

standard deviation – i.e.,
√
ρ1, ρ1 appearing in (7) –, that is depicted in Figure 2e.
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Figure 1: Simulated truncated normal densities in the original space (left) and in

the clr space (right).

2.2 Multivariate Bayes spaces

When dealing with multivariate PDFs, the natural goal is to filter out interactions

from the independent part, commonly understood as the product of the marginals.

A classical result is Sklar’s theorem (Sklar, 1959), which states that for a PDF

f(x1, . . . , xd) of a random vector (X1, . . . , Xd) in the domain I = [a1, b1]×. . . , [ad, bd],

marginal PDFs f1(x1), . . . , fd(xd) and marginal distribution functions F1(x1), . . . , Fd(xd)

we can write

f(x1, . . . , xd) = f1(x1) · . . . · fd(xd) · c(F1(x1), . . . , Fd(xd)), (9)

where c is the density of a copula

C(u1, u2, . . . , ud) = P(U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud)

for Ui = Fi(Xi) are the uniform random variables corresponding to the marginals

Fi(xi) of Xi, i = 1, . . . , d. While the standard (arithmetic) marginal PDFs occur in

(9), further decomposition of c in the original domain is not easily possible. More-

over, it is not specified whether there is a geometric relation between the marginal

PDFs f1, . . . , fd and the “interaction component” c.

All this can be achieved by embedding f in the Bayes space setting. Let (Ω,A)

be a d-dimensional product space and let λ be a finite product reference measure.

Specifically, suppose that for i ∈ D, (Ωi,Ai) is a measurable space and λi is a finite,

positive, real-valued measure on it. Set

Ω = Ω1 × · · · × Ωd, A = A1 ⊗ · · · ⊗ Ad, λ = λ1 ⊗ · · · ⊗ λd.
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Figure 2: SFPCA of Gaussian densities with µ = 0 and σi = exp(−1 + (i − 1)/10)

for i = 1, . . . , 21.
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For arbitrary non-empty I ⊆ D, let

ΩI = ×i∈IΩi, AI =
⊗
i∈I

Ai, λI =
⊗
i∈I

λi.

The need to have the product space is the only restriction we need to take into

account. For the reference measure, the Lebesgue measure is the first choice for

FDA, together with the usual case of the bounded domain, but more general settings

can also be considered. The Hilbert space structure of multivariate Bayes spaces can

be defined analogously, we refer to Genest et al. (2023) for further details.

As stated at the beginning of this section, the consideration of classical arithmetic

marginals for the decomposition of the multivariate density f has its limitations. We

will instead introduce the concept of geometric marginals, which is a generalisation

of the former and allows a much deeper insight into the dependence structure of

PDFs.

Let’s consider B2
I (λ) to be a subspace of B2(λ) with PDFs of arguments with

indices in I only. For I ⊊ D, the I-th geometric marginal is

fI,g = exp

{
1

λD\I(ΩD\I)

∫
ΩD\I

ln(f)dλD\I

}
. (10)

and its clr transformation

clr(fI,g) =
1

λD\I(ΩD\I)

∫
ΩD\I

clr(f)dλD\I .

The logarithm of f in fI,g can be replaced by its clr transformation due to prop-

erties of the exponential (and the proportionality of densities in the Bayes space

framework). Nevertheless, the form in which the geometric marginal is defined in

(11) clearly indicates its origin as a generalisation of the geometric mean of positive

data. As a special case, for I = {i}, i = 1, . . . , d the i-th geometric marginal is

fi,g = exp

{
1

λD\{i}(ΩD\{i})

∫
ΩD\{i}

ln(f)dλD\{i}

}
. (11)

The I-th geometric marginal is the unique orthogonal projection of f(≡ fµ) onto

B2
I (λ), a property which has no counterpart in the concept of (classical) arithmetic

marginals. And this is also a clear interpretive advance of the geometric marginals.
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In the case of true independence, when f is a product of (arithmetic) marginals, the

i-th geometric and the corresponding arithmetic marginals coincide. Consequently,

from this point of view, arithmetic marginals can be considered as their geometric

counterparts under the assumption of independence. Geometric marginals also con-

tain (univariate) information from the dependence structure. Consequently, the i-th

geometric marginals of f and of f∗, where D∗ ⊂ D, are generally different. There is

also another point to consider. Looking at the decomposition (9), the i-th geometric

marginal can be formulated as

fi,g = exp

 1

λD\{i}(ΩD\{i})

∫
ΩD\{i}

[
ln{c(F1, . . . , Fd)}+

d∑
j=1

ln(fj)
]
dλD\{i}

 .

Since for any distinct i, j ∈ D the integral of ln(fj) over ΩD\{i} is a constant, we

find that fi,g ∝ figi, where

gi = exp

{
1

λD\{i}(ΩD\{i})

∫
ΩD\{i}

ln{c(F1, . . . , Fd)}dλD\{i}

}
(12)

depends on both the copula and the marginals F1, . . . , Fd. Consequently, if there are

parameters specifically related to some (arithmetic) marginal, they will propagate

through the dependence structure to other geometric marginals. However, this can

be seen as an inherent property of the dependence structure rather than a deficiency

of the geometric marginals: i-th geometric marginals are those that capture all the

univariate information about i-th variable from the multivariate structure of f . We

illustrate this with two examples for d = 2. The first is from Hron et al. (2023):

Example 2 (truncated bivariate normal) We consider a zero-mean bivariate

Gaussian density N2(µ,Σ) with respect to the (product) Lebesgue measure λ[I] =

λ[I1] × λ[I2], truncated on a rectangular domain I = I1 × I2 ⊂ R2, with I1 = I2 =

[−T, T ], T = 5. The PDF is defined, for x = (x, y) ∈ I, as

f(x, y) =B2(λ) exp
{
x⊤Σ−1x

}
= exp

{
− 1

2(1− ρ2)

[
x2

σ2
1

− 2ρ
xy

σ1σ2
+

y2

σ2
2

]}
, (13)

where σ2
i = Σii and ρ ∈ [−1, 1] is the correlation coefficient. Clearly, for ρ = 0 the

case of independence is achieved. The clr transformation of f yields

clr(f)(x, y) = − 1

2(1− ρ2)

[
x2

σ2
1

− 2ρ
xy

σ1σ2
+

y2

σ2
2

]
+

T 2

6(1− ρ2)

(
1

σ2
1

+
1

σ2
2

)
. (14)
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The X-th geometric marginal is derived from (14) as

clr(fX)(x) = − 1

2(1− ρ2)
· x

2

σ2
1

+
T 2

6(1− ρ2)
· 1

σ2
1

, x ∈ I1

and eventually back-transformed to the original space as

fX(x) =B2(λX) exp

[
− 1

2(1− ρ2)

x2

σ2
1

]
(analogously for the Y -th marginal). Obviously, the parameter ρ for ρ ̸= 0 propagates

to the respective geometric marginals, which are again truncated normal PDFs (see

Figure 3), and reduces their variance. In turn, it is interesting to analyse what can

be observed from the perturbation difference fX,g ⊖ fX , which results in

fX,g ⊖ fX(x) =B2(λX) exp

[
− ρ2

2(1− ρ2)

x2

σ2
1

]
and indicates how much univariate information about X interferes with the depen-

dence structure (see Figure 4). Starting from the uniform PDF for ρ = 0 as expected,

which plays the role of the origin for the Lebesgue reference, the effect of increasing

ρ is more pronounced. On the other hand, geometric marginals are not affected by

the parameter σ2 of the marginal distribution of Y , unlike the situation in the next

example from Genest et al. (2023).

Example 3 (bivariate beta) Consider the following three-parameter bivariate beta

distribution density. For arbitrary α0, α1, α2 ∈ (0,∞) and all x1, x2 ∈ (0, 1), let

fµ(x1, x2) =
1

B(α0, α1, α2)

xα1−1
1 (1− x1)

α0+α2−1xα2−1
2 (1− x2)

α0+α1−1

(1− x1x2)α0+α1+α2
,

where B(α0, α1, α2) = Γ(α0)Γ(α1)Γ(α2)/Γ(α0 + α1 + α2) is the generalised beta

function. The univariate marginals are beta distributions with parameters (α1, α0)

and (α2, α0), respectively, which again correspond to geometric marginals under the

assumption of independence, i.e. for α0 + α1 + α2 → 0. This distribution was

analyzed in detail from the Bayes spaces perspective in Genest et al. (2023). Here

we just note that The corresponding geometric marginals are then given, for all

x1, x2 ∈ (0, 1) and j ∈ {1, 2}, by

clr(fµ,j)(xj) = (αj − 1) ln(xj) + (α0 + αj − 1) ln(1− xj)

+ (α0 + α1 + α2)

{
π2

6
+

(1− x1) ln(1− x1)

x1

}
− 2,
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Figure 3: Geometric marginals of X in the truncated bivariate normal PDF with

σ1 = 1. Colours stand for values of the parameter ρ: ρ = 0 (black), ρ = 0.3 (violet),

ρ = 0.5 (blue), ρ = 0.7 (orange) and ρ = 0.9 (red).

i.e. they actually contain parameters of the latter marginal distribution.

The concept of geometric marginals has many geometric and probabilistic impli-

cations which have no counterparts in the case of arithmetic marginals. In Genest

et al. (2023) the Hoeffding-Sobol decomposition was used to derive the following

property. For any f ∈ B2(λ),

f = find ⊕
⊕

I⊆D,|I|≥2

fI,int

where the so-called independence and interaction parts are respectively given by

find =
d⊕

i=1

fi, fI,int =
⊕

J⊆I,J ̸=∅

{(−1)|I\J |} ⊙ fJ .

and all components of the decomposition are orthogonal to each other. In other

words, it is possible to extract the “independent” case of the product of univari-

ate marginals (i-th geometric marginals, i = 1, . . . , d), which are also all mutually



18

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

t

de
ns

ity
original densities

−4 −2 0 2 4

−
4

−
2

0
2

t

de
ns

ity

clr transformed densities

Figure 4: Difference between geometric and arithmetic marginals of X in the trun-

cated bivariate normal PDF with σ1 = 1. Colours stand for values of the parameter

ρ: ρ = 0 (black), ρ = 0.3 (violet), ρ = 0.5 (blue), ρ = 0.7 (orange) and ρ = 0.9 (red).

orthogonal, and then use I-th geometric marginals to specify from bivariate interac-

tions up to a PDF representing mutual interactions of all variables. Obviously, in the

truly independent case (in the probabilistic sense), the independent part becomes a

product of arithmetic marginals and the interaction part becomes a uniform PDF.

One of the most important implications of the orthogonal decomposition of mul-

tivariate PDFs is the Pythagorean Theorem,

∥f∥2B2(λ) = ∥find∥2B2(λ) +
∑

I⊆D,|I|≥2

∥fI,int∥2B2(λ), (15)

where ∥find∥2B2(λ) = ∥f1∥2B2(λ)+ · · ·+ ∥fd∥2B2(λ). Since the Bayes norm can serve as a

scalar measure of information (Egozcue and Pawlowsky-Glahn, 2018), (15) can also

be interpreted as a decomposition of the information conveyed by the multivariate

PDF. Accordingly, the 2d − 1 components of the vector

R2
B2(λ)(f) =

(
∥f1∥2B2(λ)

∥f∥2B2(λ)

, · · · ,
∥fd∥2B2(λ)

∥f∥2B2(λ)

,
∥f{1,2},int∥2B2(λ)

∥f∥2B2(λ)

, · · · ,
∥fD,int∥2B2(λ)

∥f∥2B2(λ)

)
(16)
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add up to 1. The components of this vector thus provide a measure of the rela-

tive contribution of each and every subset of variables in the set D to the overall

dependence structure. In the spirit of Egozcue and Pawlowsky-Glahn (2018), the

compositional vector (16) could also be regarded as a break-down of the total infor-

mation contained in the density fµ. The sum of the terms associated with subsets

of size 2 and above constitutes the multivariate analog of the simplicial deviance

from Hron et al. (2023). The resulting information composition can be analyzed us-

ing methods of compositional data analysis, like those collected in (Filzmoser et al.,

2018). Let’s illustrate this on example from Matys Grygar et al. (2024):

Example 4 (RKP data) We consider trivariate densities of (log-transformed) cop-

per (Cu), lead (Pb) and zinc (Zn) soil concentration data in 77 districts of the Czech

Republic from the Register of Contaminated Areas (registr kontaminovaných ploch)

collected by the Department of Agriculture of the Czech Republic (Podlešáková et al.,

1996; Zb́ıral et al., 2004; Poláková et al., 2011). At least higher hundreds of con-

centration values were available in each district and smoothed to density data. Dis-

tricts are characterized by diverse geological origin and anthropogenic contamination,

which is however typically homogeneous enough within one district.

In Figure 5 the result of hierarchical clustering of information compositions in all

districts using complete linkage is presented in form of a heatmap. For this purpose

the compositions were represented first with the multivariate – counting measure –

version of the clr transformation (5). Compositional parts corresponding to the uni-

variate geometric marginals are denoted f(Cu), f(Pb), and f(Zn), to the bivariate

interactions f(Cu,Pb), f(Cu,Zn), and f(Pb,Zn), and to the trivariate interaction

f(Cu,Pb,Zn). Among other patterns, which are in detail described in Matys Gry-

gar et al. (2024), it is interesting to observe that districts collected in cluster C have

all the same source of contamination (agricultural spraying due to intensive land

use). They are characterized by simultaneous heterogeneities in uni- and bivariate

densities with Cu, which is common also for other pesticide-contaminated districts.
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Figure 5: Hierarchical clustering of districts according to their respective clr trans-

formed information compositions. Specific values of norms indicate heterogeneity

of the respective distributions: low norms (in blue hues) correspond to high hetero-

geneities, while high norms (in red hues) evidence narrow distributions.
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3 Goals of the thesis

Bayes spaces provide a general framework for embedding discrete and continuous

distributions, as well as measures. The thesis aims to present the contributions

developed by the Candidate, in collaboration with his PhD students and other col-

leagues. These contributions have aimed to

1. build a solid theoretical ground for Bayes spaces,

2. demonstrate the potential of Bayes spaces in concrete popular methods of

functional data analysis, adapted to the analysis of samples of probability

density functions.

In fact, the latter goal was of primary interest at the outset. The motivation was

to follow up the initial application of Bayes spaces to population pyramids (Deli-

cado, 2011) in the context of dimension reduction and to show that their potential

for adapting methods for statistical processing of PDFs is much broader, but also

that the benefits of using Bayes spaces go beyond the possibility of representing

PDFs in the usual L2 space. Clearly, these benefits are primarily related to the

scale invariance of densities, which sheds new light on the proportionality of PDFs

known from Bayesian statistics and is the key to understanding that the variability

of densities is inherently contained in their small function values. In the context

of dimension reduction, but also for the representation of PDFs in general, it is

also crucial to consider that distributions from the exponential family form a finite

dimensional subspace of the Bayes space.

Naturally, the development of methods for statistical processing of PDFs soon

led to theoretical challenges related to Bayes spaces. To be able to weight the domain

of PDFs by a proper choice of the reference measure, it was necessary to clarify the

role of its scale, because there was an inconsistency between the foundational works

of Egozcue et al. (2006) and van den Boogaart et al. (2014). This inconsistency led

to problems with the continuous counterpart of the principle of subcompositional

dominance known from compositional data analysis (Pawlowsky-Glahn et al., 2015);

resolving this opened up the possibility of analysing PDFs with a general reference

measure using standard methods of FDA. The next step was the development of

Bayes spaces for multivariate PDFs, where the key point was to redefine the role
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of the marginals and to reveal the role played by the scale of the reference mea-

sure. Here Egozcue et al. (2015) and Fačevicová et al. (2022) were instrumental in

understanding the structure of multivariate Bayes spaces.
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4 Structure of the thesis

The thesis consists of six papers which can be divided into two main blocks accord-

ing to the goals of the thesis. In the first block, three papers are presented that

demonstrate the potential of Bayes spaces for functional data analysis of samples

of probability density functions, also known as density data analysis. The second

block contains three theoretical papers that develop the Bayes space methodology

itself, but also provide impetus for concrete applications. For each paper, there is

also a concrete specification of the Candidate’s contribution, which in some papers

reflects his role as supervisor of a PhD student.

These papers can be considered as a concise selection of the Candidate’s scientific

output, although they do not represent a complete list of his work on Bayes spaces.

Some other closely related papers not included in the thesis are therefore listed in

Section 2.

4.1 Density data analysis using Bayes spaces

• Hron, K., Menafoglio, A., Templ, M., Hr̊uzová, K., Filzmoser, P. (2016) Simpli-

cial principal component analysis for density functions in Bayes spaces. Com-

putational Statistics and Data Analysis 94, 330–350.

The aim of the paper is to build up a concise methodology for functional principal

component analysis of densities. A simplicial functional principal component anal-

ysis (SFPCA) is proposed, based on the geometry of the Bayes space of functional

compositions. SFPCA is performed by exploiting the centred log-ratio transform, an

isometric isomorphism between the Bayes space and the L2 space which enables one

to resort to standard functional data analysis tools. The advantages of the proposed

approach with respect to existing techniques are demonstrated using simulated data

and a real-world example of population pyramids in Upper Austria.

Contribution of the Candidate:

- Development of the SFPCA model.

- Design and evaluation of the simulation study.
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- Interpretation of the results of the empirical study.

• Talská, R., Hron, K., Matys Grygar, T. (2021) Compositional scalar-on-function

regression with application to sediment particle size distributions. Mathemat-

ical Geosciences 53, 1667–1695.

The chemical composition of sediments is controlled predominantly by the sed-

iment grain size, and thus evaluating their relationship is an important task in

sedimentary geochemistry. The grain size is characterized by the respective particle

size distribution, which can be expressed as a probability density function. Because

of the relative character of densities, the Bayes space methodology was employed

to build a functional regression model between a real response and a density func-

tion as a covariate, here the chemical composition and the particle size density. For

practical computations, density functions were expressed in the standard L2 space

using the centred logratio transformation and spline approximation of the input

discretized densities was utilized by respecting the induced zero-integral constraint.

After a concise simulation study, supporting the relevance of the proposed regression

model, the new methodology was applied to examine the relationship between sed-

iment grain size and geochemical composition, with samples being obtained in the

Czech Republic in the Skalka Reservoir and in the Ohře River floodplain upstream

of the reservoir, to reveal proper grain size proxies. The Al/Si and Zr/Rb logratios

in the sediments that were studied showed grain-size control, which makes them

suitable for this purpose.

Contribution of the Candidate:

- Development of the compositional scalar-on-function regression model.

- Design and evaluation of the simulation study.

- Interpretation of the results of the empirical study.

• Pavl̊u, I., Menafoglio, A., Bongiorno, E.G., Hron, K. (2023) Classification of

probability density functions in the framework of Bayes spaces: methods and

applications. Statistics and Operations Research Transactions 47, 295–322.
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In this paper the process of supervised classification when the data set consists

of probability density functions is studied. Due to the relative information contained

in densities, it is necessary to convert the functional data analysis methods into an

appropriate framework, here represented by the Bayes spaces. This work develops

Bayes space counterparts to a set of commonly used functional methods with a fo-

cus on classification. Hereby, a clear guideline is provided on how some popular

classification approaches can be adapted for the case of densities, and that in the

classification context it is also quite straightforward. Comparison of the methods is

based on simulation studies and real-world applications, reflecting their respective

strengths and weaknesses.

Contribution of the Candidate:

- Development of the Bayes space formulation of the classification models.

- Design and evaluation of the simulation study.

- Design of the empirical studies, interpretation of their results.

4.2 Methodological contributions to Bayes spaces

• Talská, R., Menafoglio, A., Hron, K., Egozcue, J.J., Palarea-Albaladejo, J.

(2020) Weighting the domain of probability densities in functional data analy-

sis. Stat 9, e283.

In functional data analysis, some regions of the domain of the functions can be

of more interest than others owing to the quality of measurement, relative scale of

the domain, or simply some external reason (e.g. interest of stakeholders). Weight-

ing the domain is of interest particularly with probability density functions (PDFs),

as derived from distributional data, which often aggregate measurements of differ-

ent quality or are affected by scale effects. A weighting scheme can be embedded

into the underlying sample space of a PDF when it is considered as continuous

compositions applying the theory of Bayes spaces. The origin of a Bayes space is

determined by a given reference measure, and this can be easily changed through the

well-known chain rule. This work provides a formal framework for defining weights

through a reference measure, and it is used to develop a weighting scheme on the
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bounded domain of distributional data. The impact on statistical analysis is illus-

trated through an application to functional principal component analysis of income

distribution data. Moreover, a novel centred log-ratio transformation is proposed

to map a weighted Bayes space into an unweighted L2 space, enabling to use most

tools developed in functional data analysis (e.g. clustering and regression analysis)

while accounting for the weighting scheme. The potential of our proposal is shown

on a real case study using Italian income data.

Contribution of the Candidate:

- Development of the weighting scheme.

- Design and evaluation of the simulation study.

- Design of the empirical study, interpretation of its results.

• Hron, K., Machalová, J., Menafoglio, A. (2023) Bivariate densities in Bayes

spaces: orthogonal decomposition and spline representation. Statistical Papers

64, 1629–1667.

A new orthogonal decomposition for bivariate probability densities embedded in

Bayes Hilbert spaces is derived. It allows representing a density into independent

and interactive parts, the former being built as the product of revised definitions of

marginal densities, and the latter capturing the dependence between the two ran-

dom variables being studied. The developed framework opens new perspectives for

dependence modelling (e.g., through copulas), and allows the analysis of datasets of

bivariate densities, in a functional data analysis perspective. A spline representation

for bivariate densities is also proposed, providing a computational cornerstone for

the developed theory.

Contribution of the Candidate:

- Development of the orthogonal decomposition of bivariate densities.

- Design of the empirical study, processing and interpretation of its results.
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• Genest, C., Hron, K., Nešlehová, J.G. (2023) Orthogonal decomposition of mul-

tivariate densities in Bayes spaces and relation with their copula-based repre-

sentation. Journal of Multivariate Analysis 198, 105228.

Bayes spaces were initially designed to provide a geometric framework for the

modeling and analysis of distributional data. In Hron et al. (2023) it was shown

that this methodology can be exploited to construct an orthogonal decomposition of

a bivariate probability density into an independence and an interaction part. In this

paper, new insights into these results are given by reformulating them using Hilbert

space theory, and a multivariate extension is developed using a distributional analog

of the Hoeffding–Sobol identity. A connection is also made between the resulting

decomposition of a multivariate density and its copula-based representation.

Contribution of the Candidate:

- Conceptualization, methodology, validation, writing – original draft, review and

editing (CRediT).

- Participation in methodological developments and illustrative examples.
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5 Scientific papers in the thesis

The scientific papers that make up the thesis are presented there in the following

order:

1. Hron, K., Menafoglio, A., Templ, M., Hr̊uzová, K., Filzmoser, P. (2016) Simpli-

cial principal component analysis for density functions in Bayes spaces. Com-

putational Statistics and Data Analysis 94, 330–350.

2. Talská, R., Hron, K., Matys Grygar, T. (2021) Compositional scalar-on-function

regression with application to sediment particle size distributions. Mathemat-

ical Geosciences 53, 1667–1695.

3. Pavl̊u, I., Menafoglio, A., Bongiorno, E.G., Hron, K. (2023) Classification of

probability density functions in the framework of Bayes spaces: methods and

applications. Statistics and Operations Research Transactions 47, 295–322.

4. Talská, R., Menafoglio, A., Hron, K., Egozcue, J.J., Palarea-Albaladejo, J.

(2020) Weighting the domain of probability densities in functional data analy-

sis. Stat 9, e283.

5. Hron, K., Machalová, J., Menafoglio, A. (2023) Bivariate densities in Bayes

spaces: orthogonal decomposition and spline representation. Statistical Papers

64, 1629–1667.

6. Genest, C., Hron, K., Nešlehová, J.G. (2023) Orthogonal decomposition of mul-

tivariate densities in Bayes spaces and relation with their copula-based repre-

sentation. Journal of Multivariate Analysis 198, 105228.
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for representation of density functions. Computational Statistics, 36:1031–1064.
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zkušebńı ústav zemědělský v Brně”, ”Brno, Czech Republic”.

Qiu, J., Dai, X., and Zhu, Z. (2024). Nonparametric estimation of repeated densities

with heterogeneous sample sizes. Journal of the American Statistical Association,

119(545):176–188.

Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis. Springer,

New York.

Scealy, J. L. and Welsh, A. H. (2011). Regression for compositional data by using

distributions defined on the hypersphere. Journal of the Royal Statistical Society,

Series B (Statistical Methodology), 73(3):351–375.
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Resumé

Bayes spaces provide a general framework for representing relative (distributional)

data, covering compositional data and their multifactorial generalisation, as well as

univariate and multivariate probability density functions (PDFs). The key property

is the scale invariance of these data objects (as well as their associated measures),

meaning that any positive constant multiple of them carries essentially the same in-

formation. The Hilbert space structure of Bayes spaces allows to consider a general

reference measure for domain weighting, as well as to define an isometric isomor-

phism with the standard geometric framework of multivariate (functional) data, the

so-called centred logratio transformation, to enable the use of popular methods of

multivariate statistics and functional data analysis, respectively.

The thesis focuses on the analysis of samples of probability density functions

(density data) using the Bayes space methodology. Its aim is to summarise the

main achievements into a concise methodology for density data analysis, where the

Candidate has contributed significantly. Specifically, the efforts can be characterised

as twofold: (1) building a concise methodology for density data processing by adapt-

ing popular methods of functional data analysis, (2) contributing to the theoretical

development of Bayes spaces themselves. There is a record of scientific publications

for both. In (1), dimension reduction of a sample of PDFs using simplicial func-

tional principal component analysis, scalar-on-function regression with density as

a functional covariate, and classification of PDFs using adapted popular methods

of functional data analysis were developed. In (2), weighted density data analysis

was proposed by an appropriate choice of the reference measure; understanding the

structure of the Bayes space then allowed the development of bivariate and, in the

sequel, multivariate extensions of Bayes spaces.

The scientific papers included in the thesis are accompanied by other references

that demonstrate the Candidate’s extensive track record in analysing relative data.

And all of them aim to clearly demonstrate the strong potential of the Bayes space

methodology to address challenges in the statistical processing of distributional data.


